GHSA-9c8h-vvrj-w2p8

Suggest an improvement
Source
https://github.com/advisories/GHSA-9c8h-vvrj-w2p8
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/08/GHSA-9c8h-vvrj-w2p8/GHSA-9c8h-vvrj-w2p8.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-9c8h-vvrj-w2p8
Aliases
Published
2021-08-25T14:43:59Z
Modified
2024-11-13T16:39:08.399537Z
Severity
  • 7.1 (High) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H CVSS Calculator
  • 6.9 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:H/SC:N/SI:N/SA:N CVSS Calculator
Summary
Heap OOB in `RaggedGather`
Details

Impact

If the arguments to tf.raw_ops.RaggedGather don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers.

import tensorflow as tf

tf.raw_ops.RaggedGather(
  params_nested_splits = [0,0,0],
  params_dense_values = [1,1],
  indices = [0,0,9,0,0],
  OUTPUT_RAGGED_RANK=0)

In debug mode, the same code triggers a CHECK failure.

The implementation directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by params_nested_splits is not an empty list of tensors.

Patches

We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0